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Abstract. We study the emergent cooperative behavior in a reactive Multi-Agent
System (MAS) using the tileworld as a testbed. We take into consideration two
strategies to simulate the behavior of the agents in their search for the tile pushing
position: ‘minimal distance” and ‘clockwise movement’. The results are compared
with emergent cooperative behavior by genetic programming.

1. Introduction

Distributed Artificial Intelligence studies the cooperative resolution of problems through a proc-
ess or a group of descentralized agents. An agent is an entity that operates with some degree of
autonomy and intelligence because they should have some reasoning and learning capacity and a
way to cooperate and negotiate with other agents. Agents that explicitly have a capacity for rea-
soning and learning and are able to cooperate and negotiate with other agents are called cognitive
agents. The cognitive agent approach needs an explicit representation of knowledge. A different
approach is the so-called reactive approach. Reactive agents use a representation of behavior
instead of knowledge. The activity of a reactive agent is produced by an interaction between
agent and environment and not by an internal reasoning process [3].

In this paper, we focus on emergent cooperation in a reactive Multi-Agent System (MAS) and we
use two tileworlds as a testbed (Figure 1 and 2). As defined by Pollack and Ringuette [1], the
tileworld is a chessboard-like grid on which there are agents (denoted A;, i=1,..,N), tiles (T), ob-
stacles (#), and holes (V). An agent is a square unit which is able to move Up, Down, Left, or
Right, one cell at a time unless, by doing so, it runs across an obstacle or finds one of the world’s
boundaries. When a tile is in a adjacent cell, the agent can push it by moving in that direction. A
tile is a square unite which “slides”, so rows of tiles can be pushed by the agent. An obstacle 1s a
group of grid cells which are immovable.

In the original Tileworld [1], a hole is a group of grid cells with a tile “fill in” capacity, i.e., a cell
that can be filled in by a tile when this tile is moved on top of it. The tile and the hole cell in
question thus disappear, leaving a blank cell in their place. The agent scores points when all the
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cells in a hole are filled in. The agent knows ahead of time how valuable the hole is and its over-
all goal is to score as many points as possible by filling in holes. For sake of simplicity, we have
omitted this criteria of hole capacity and score. In this way, the goal of the agent becomes to
push all tiles as quickly as possible into the holes.

Manderick et al. [2] have studied emergent of cooperative behavior in the tileworlds in figure 1
through Genetic Programming (GP) and they have adopted the same simplification with regard to
the hole’s unlimited capacity and no scoring by the agent. The situation depicted in the TW1 can
be used to illustrate a case where cooperation is needed to achieve the goal effectively. It would
take more movements for agents Ay or A; to perform the entire task on their own than it would if
they worked together. The former needs 17 movements assuming A; is not on its way, and the
latter needs 16 movements'. If the agents cooperate with each other the task will take them the

minimum number of movements (i.e. 12) in each one of the both cases TW1 e TW2.
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Figure | - The Initial State of the Tileworlds TW1 (léﬂ:) and TW2 (right)

This paper starts by introducing Manderick et al.’s genetic programming for the Tileworld. Then
the reactive agent modeling for the same Tileworld is presented. Finally, we discuss the results
we obtained.

2. Genetic Programming for the Tileworld

Since the beginning of the 70s, algorithms based on metaphors of some natural evolution proc-
esses of living creatures have been suggested for the resolution of problems. Genetic Algorithms

! The agent A;’s movements, assuming the origin (row 0, column 0) at up left corner, are: (5,6), (4,6), (3,6),

(2,6), (3.6), (3.5), (3.4), (4,4), (4.3), (3.3), (3,2), (2.2), (2,3), (1,3), (1,4), (1,5), (L.6)
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(GA) make use of concepts such as natural evolution, population, genotypes, reproduction, mu-
tation, crossover, and generation in the area of resolution of problems. Cooperative behavior can
evolve through GA as follows [2]. First, allow the multi-agent system to behave according 1o
each element of its population and evaluate its performance through a fitness function. Select the
best members of the previous generation according to their fitness values (the higher their fitness
value, the higher their probability to reproduce will be) and recombine their genotypes by using
mutation and/or crossover. Make room for the new resulting genotypes (this can possibly be done
by removing the worst fitness genotypes). Generate the next generation of the population includ-
ing the new genotypes. Repeat this process until a behavior is found that allows the MAS to solve
the task at hand, or the time limit (i.e. the maximum iteration number) is reached, whatever hap-
pens first.

Genetic Programming (GP) is an evolutionary computation technique where the genotypes are
parse trees of Lisp-functions called GP trees. As Manderick et al. point out, GP starts with a ran-
domly generated population de GP trees, each of which is assigned a fitness value. Next, some
members of the previous generation are selected based on their higher fitness values. Finally, the
selected GP trees are recombined using mutation and/or crossover to produce new GP trees. A
new generation is formed when some GP trees are removed to make room for the new ones. This
fitness evaluation-selection-recombination process continue until a solution for the task at hand is
found or some stop criterion is met.

The mutation and crossover genetic operators change the GP trees in such a way that the resultant
GP trees are always semantically meaningful. The mutation of a GP tree T consists of selecting,
at random, of a subtree ST of T and replacing it with a new randomly generated tree ST The
crossover of a pair of GP trees T, and T, consists of selectioning, at random, the subtrees ST, and
ST-, in T, and T, respectively. ST, then replaces ST, in T and ST, replaces ST, in T,, thus re-
sulting the trees T;” and T,’, which are called the offspring.

Manderick et al. represented the behavior of an agent via a parse tree of a Lisp function, in order
to apply GP to the Tileworld. The Lisp function output is a vector v which has to be mapped on
one of the possible actions an agent can take: STAY or move one step RIGHT, UP, LEFT or
DOWN, depending on the direction of v. The agent must STAY where it is if the norm_of v is
less than or equal to a certain parameter. The Lisp functions are built up with basic symbols like
that Tile (the vector from the agent to the nearest tile), Hole (the vector from the agent to the
nearest hole), etc.

In the case of the Tileworld, the fitness function of a GP tree was assigned in such a way that the
following conditions are met: a) give a high score to a behavior which causes the agent to push a
tile into a hole; b) give a higher score to a behavior which causes the agents to finish the task
quickly; and c) if there are tiles left after the execution of the behavior, then give a higher score
when tiles have been moved closer to some holes. The fitness function used by Manderick et al.
is given by:

[ = Bonus x ft + Speed x (Eval — 7))+ Cr x Zd(og(l),nr(l)) —d(cr(t),nr(t))
relT



Where:

Bonus, Speed and ('y are param@t@m whose values are, respectively 3000, 80 and 100, in order to
meet the three conditions above;

/1 1s the number of tiles pushed into the holes;

Eval = 50 1s the fixed limit of time steps given to the agents to finish the task;

17 1s the time steps required to push all tiles into the holes. It is the same as £val if the task 1s not
completed;

L7 is the set of tiles not pushed into holes

d 1s the distance function;

og(t), cr(t) and nr(t) are the original position, the current position, and the position of the nearest
hole to tile 7, respectively.

These authors have considered three different breeding strategies to evolutionary cooperative
behavior in the Tileworld through GP: homogeneous, heterogeneous, and the co-evolutionary
breeding strategy.

One population of 1024 single behaviors evolves in the homogeneous breeding strategy. The
agents execute a single behavior and this determines the effectiveness of the MAS. The resulting
behavior may vary from agent to agent, since each agent’s local environment is different, e.g. the
nearest tile or the nearest hole might be different for different agents. Each member of the popu-
lation represents a single behavior which corresponds to a GP tree and is evaluated by allowing
all agents to execute the corresponding behavior and then taking their fitness values into account.

Once again, one population of 1024 individuals is evolved in the heterogeneous breeding strat-
egy but now each member specifies a series of behaviors, namely one for each agent in the MAS
Each member of the population is a multi-branched GP tree with one branch for each agent in zhs
MAS. Each agent executes its corresponding behavior in the series and job specialization among
agents can occur. Crossover is testricted to corresponding branch pairs, during breeding. Each
member of the population 1s evaluated by allowing each agent to execute its corresponding
branch and then taking its fitness value into account.

Now the population is divided in subpopulations, one for each agent in the MAS. In this way,
multiple subpopulations of single behaviors are evolved, one for each agent. A MAS is set up by
selecting a behavior for each agent from its corresponding subpopulation. Manderick at al. point
that now there is a problem of credit assignment because we know the effectiveness of the MAS
as a whole and we now need to find a way to determine the relative contribution of each individ-
ual behavior since it is this that will determine which behaviors are selected from the subpopula-
tions. They have solved this problem by randomly choosing the agents’ behavior for the initial
generation and then combine the best behaviors then evolved up to that moment in each Agent-
type subpopulation, in later generations. In order to provide useful behavioral building blocks for
the agents, the initial population of 1024 individuals is divided in N+1 subpopulations, where N
is the number of agents in the MAS. One subpopulation, called Homo-type, evolves a program
under the homogeneous strategy. The N other subpopulations, called Agent-type, evolve a spe-
cialized program for a particular agent. At each generation, M = 10 individuals from the Homo-
type subpopulation emigrate to the Agent-type subpopulation. The best behavior evolved up to
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that moment in Agent-type subpopulations is taken into account in the evaluation of the fitness
values of all other members of all other subpopulations.

Table 1 presents the comparison of performance averaged over 20 runs, each one consisting of
100 generations. The average number to complete the task and the average best fitness values
(between brackets) in the final generation are shown. As the minimum number of time steps to
complete the task at the TW1 or at the TW2 is 12, then according to the fitness function, the
maximum fitness are 9040 and 12040, respectively.

Manderick et al. conclude that the homogeneous breeding strategy gave satisfactory results for
both Tileworlds but the acquired solutions were not necessarily optimal. The agents did not al-
ways cooperate effectively or did not work together at all. The optimal solution was often ac-
quired for TW1 in the case of the heterogeneous breeding strategy but 1t gave worse performance
on TW2 than for the other two strategies. The reason for that seems to be that this strategy re-
quires a large number of subpopulations (3x1024 trees for TW2) which might degrade GP
search in the case of many agents. The co-evolutionary breeding strategy gave better results than
the homogeneous one but worse results than the heterogeneous breeding on TW1. Its perform-
ance on TW2 was better than for the other two strategies. Cooperation only emerged for co-
evolutionary breeding strategy. Another advantage is that this strategy allows for job specializa-
tion to occur without increasing the complexity of its population members.

ithe

Table 1 - Comparison of Performance averaged over 20 runs

Breeding Co-evolutionary

strategy Homogeneous Heterogeneous with Homo-type w/out Homo-Type

Tileworld TW 1 27.35 17.81 20.66 36.16
(7892.00) (8655.00) (8427.14) (7187.00)

Tileworld TW2 39.89 49.98 20.19 48.93
(9889.00) 6081.09 (11465.00) (9165.00)

Reference: Manderick et al. [2]

The results presented in the last column were obtained when the quoted authors [2] ran the same

experiments for the co-evolutionary breeding strategy without migration from the Homo-type .
subpopulation to the whole Agent-type subpopulation. These results are much poorer than when

migration is permitted.
3. Reactive Agent Modeling for the Tileworld

The implementation of the reactive agents in the worlds TW1 and TW2 was made using C Lan-
guage in a C++ environment. ).

Each world is composed by cells, each one with its own coordinates (x,y). These cells are either
filled with: an agent (*a’), an obstacle (‘#°), a hole (‘h’), a tile(‘t’) or are empty("* *).The gradient
field of each hole is a system of coordinates (x,y) centered in the hole itself.
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There are three ways to explore the world: exploring (‘x’), pushing (‘¢’) and find tile pushing
position (‘b’). There are four possible movements: exploring, random, pushing and find tile
pushing position. Each Agent has three variables: mode, actual position and tile pushing position.
The agent starts in the exploratory mode. -

The program ends when all the tiles are pushed into the holes or when the iteration limit is
reached.

The movements of the agents were modeled through the following algorithms:

exploratory movement:

Evaluate surtoundings, 1.€. cells UP, RIGHT,DOWN and LEFT
If a tile 1s found go to pushing mode

If there are empty cells arcund perform random movement
Otherwise keep still

'-é:af.ﬁl\):md@

random movement:
Choose the direction of movement through a selection process: O(left), 1 (right), 2 (up) or
down).
Verify if the movement of the agent will hit a boundary or an obstacle.
The agent moves if everything is OK
. Otherwise another selection is made (excluding the impossible direction) until a free path
selected and the agent is thus able to move.

o0 N1 Oy W @
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pushing mode:

Evaluate surroundings.

If there is not any tile in the surrounding tile, go to exploratory mode

If there 1s more than one tile, pick one at random

. Select the hole with the same alignment as the tile. If there is none, then select the closest
one. If there is more than one choice, select one at random

5. If a hole is selected then push the ule in order to reduce its distance from a hole

6. Go to exploratory mode if the tile is pushed into the hole

7. If the tile movement does not reduce the distance from the tile to a hole then determine the
pushing position and go to pushing-position mode.

JA‘JJNW@

tile pushing position mode:

Evaluate surroundings.

If there is a tile go to pushing mode.

If there are no free cells keep still.

. Move according to selected strategy for behavior of the agents in the search for the tile
pushmg position: minimal distance or clockwise movement.

5. If there is more than one possible direction choose one at random.

6. If the tile pushing position is found, change to pushing mode.
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In the minimal distance strategy, the agent moves in the free direction that minimizes the actual
distance to the hole. We have also modeled a behavior to avoid obstacles so that it an agent finds
an obstacle, it just performs movement at random.

We have used a subsumption architecture [4] to prioritize the actions as follows. Note that the
lower layers have more priority than the upper ones :

random movement

find tile pushing position

pushing movement

exploratory movement

avoid obstacles.

Thus, avoiding obstacles has the highest priority and random movement has the lowest.

4. The results

To evaluating the algorithm performance we are using the same fitness function and its parame-
ters as Manderick et. al. (see Section 2). We averaged the values presented in Figures 2 and 3
running 200 experiments. These Figures presented the average performances of the algorithm
considering the different tileworlds, TW1 and TW2, and the two possible strategies of agent’s
behavior when it is searching the tile pushing position. These average performances are maximal
performance percentage. The maximal performance is obtained with agent cooperation when the
task take the minimum number of movements

TILEWORLD 1: Average Performance
Optimum Performance vs Iteration Limit
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The world configuration affects the strategy performance. The minimal distance strategy presents
better results than the clockwise strategy in the tileworld TW1 (as we can see in Figure 2) but not
in the tileworld TW2. On the other hand, the clockwise strategy presents better results than the
minimal distance strategy in tileworld TW2 (Figure 3). In the TW2 the objects were spread over
a wide area and this feature makes the agent rounding easier or more likely to happen.

TILEWORLD 2: Average Performance
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F igure 3 - Average Performance in the TW2

Firstly, the agents spend many iterations finding tiles randomly. After that, with lower iteration
limit, the agents have not more time to complete its task. Consequently they present lower aver-
age performance. Initially the average performance increase sharply with the growth of the itera-
tion limit and after that it increase slightly. The former behavior means more tiles pushed into
holes. The later behavior means if the agents could push tiles into holes, it takes it around 500
iterations. If it was not successful it spend the remaining iterations doing redundant movements.

5, Conclusions

The solution presented by Genetic. Programming is optimal but it is specific for each tileworld
configuration. If you change the tileworld configuration you can not use this solution anymore.
Therefore the solution is not robust. In addition, the solution by reactive agent is not optimal but
acceptable. This approach is more robust than the other because we can use the same basic
movements (e.g. random, find the pushing-position, pushing, exploring, and avoid obstacles
movement) in different tileworlds configurations. To sum up, we can maintain the same agent’s
modeling in different tileworlds.
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In spite of this, contrasting Genetic Programming and reactive agents approach, only Genetic
Programming can evolve real cooperation behavior among the agents. But we believe that evolve
cooperation by Genetic Programming for more complex tileworld will be more difficult because
the complexity of the genotypes will be higher and it will be hard to find the optimal solution.
Also we believe that evolve cooperation by reactive agent approach does not suffer these effect.

References

1. Martha E. Pollack and Marc Ringuette. Introducing the Tileworld: Experimentally
Evaluating Agent Architectures. In Proceedings of the 8th National Conference on Artificial
Intelligence AIlI-90, pages 183-189, Boston, MA., 1990.

2. Bernard Manderick and Hitoshi Iba. Emergent Cooperation in Multi-agent Systems
by Genetic Programming. Communication presented at the 13th Brazilian Symposium on Arti-
ficial Intelligence SBIA 96, Curitiba, Brazil, 1996.

3. Peter Wavish. Exploiting Emergent Behavior in Multi-Agent Systems. In Eric
Werner and Yves Demazeau, Editors, Decentralized Artificial Intelligence, Elsevier Science
Publishers, 1992.

4. R. A Brooks. Robust Layered Control System for a Mobile Robot. IEEE Jouwrnal of
Robotics and Automation, 2:14-23, 1986

937



